Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry
نویسندگان
چکیده
منابع مشابه
Cumulative Step Length Adaptation on Ridge Functions
The ridge function class is a parameterised family of test functions that is often used to evaluate the capabilities and limitations of optimisation strategies. Past research with the goal of analytically determining the performance of evolution strategies on the ridge has focused either on the parabolic case or on simple one-parent strategies without step length adaptation. This paper extends ...
متن کاملStep Length Adaptation on Ridge Functions
Step length adaptation is central to evolutionary algorithms in real-valued search spaces. This paper contrasts several step length adaptation algorithms for evolution strategies on a family of ridge functions. The algorithms considered are cumulative step length adaptation, a variant of mutative self-adaptation, two-point adaptation, and hierarchically organized strategies. In all cases, analy...
متن کاملLocomotor play drives motor skill acquisition at the expense of growth: A life history trade-off
The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial ...
متن کاملNutrient signaling in protein homeostasis: an increase in quantity at the expense of quality.
The discovery that rapamycin extends the life span of diverse organisms has triggered many studies aimed at identifying the underlying molecular mechanisms. Mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth and may regulate organismal aging by controlling mRNA translation. However, how inhibiting mTORC1 and decreasing protein synthesis can extend life span remains an unreso...
متن کاملFirst-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus
The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physiology
سال: 2019
ISSN: 1664-042X
DOI: 10.3389/fphys.2019.00060